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We investigate the evolution of localized blobs of swirling or buoyant fluid in an infinite, inviscid, electri-
cally conducting fluid. We consider the three cases of a strong imposed magnetic field, a weak imposed
magnetic field, and no magnetic field. For a swirling blob in the absence of a magnetic field, we find, in line
with others, that the blob bursts radially outward under the action of the centrifugal force, forming a thin
annular vortex sheet. A simple model of this process predicts that the vortex sheet thins exponentially fast and
that it moves radially outward with constant velocity. These predictions are verified by high-resolution numeri-
cal simulations. When an intense magnetic field is applied, this phenomenon is suppressed, with the energy and
angular momentum of the blob now diffusing axially along the magnetic field lines, converting the blob into a
columnar structure. For modest or weak magnetic fields, there are elements of both types of behavior, with the
radial bursting dominating over axial diffusion for weak fields. However, even when the magnetic field is very
weak, the flow structure is quite distinct to that of the nonmagnetic case. In particular, a small but finite
magnetic field places a lower bound on the thickness of the annular vortex sheet and produces an annulus of
counter-rotating fluid that surrounds the vortex core. The behavior of the buoyant blob is similar. In the absence
of a magnetic field, it rapidly develops the mushroomlike shape of a thermal, with a thin vortex sheet at the top
and sides of the mushroom. Again, a simple model of this process predicts that the vortex sheet at the top of
the thermal thins exponentially fast and rises with constant velocity. These predictions are consistent with
earlier numerical simulations. Curiously, however, it is shown that the net vertical momentum associated with
the blob increases linearly in time, despite the fact that the vertical velocity at the front of the thermal is
constant. As with the swirling blob, an imposed magnetic field inhibits the formation of a vortex sheet. A strong
magnetic field completely suppresses the phenomenon, replacing it with an axial diffusion of momentum,
while a weak magnetic field allows the sheet to form, but places a lower bound on its thickness. The magnetic
field does not, however, change the net vertical momentum of the blob, which always increases linearly with
time.
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I. INTRODUCTION

There are two, closely related, inviscid flows that have
received considerable attention in recent years. Both are axi-
symmetric, initial value problems involving localized distur-
bances in an otherwise quiescent fluid. One is the evolution
of an isolated patch of swirling fluid, and the other is the
development of a single buoyant blob in an infinite domain.
These flows have similar characteristics. In the case of the
buoyant blob, the buoyancy force not only causes the light
fluid to rise, but also distorts the blob into a characteristic
mushroomlike shape, with an intense vortex sheet at the top
and sides of the mushroom �1�. The swirling blob, on the
other hand, bursts radially outward under the action of the
centrifugal force, creating a thin, annular vortex sheet in the
process �see, for example, Davidson �2��. The dynamics of
these two flows are very similar, as one might expect from
the analogy between buoyancy and swirl, and indeed the
shape of the vortex sheet caused by the radial bursting of a
swirling vortex is remarkably similar to the mushroomlike
structure associated with the buoyant blob. �Compare Fig. 2
in E and Shu �1� with Fig. 1 in Davidson �2��.

The interest in these flows stems partly from the fact that
they generate vortex sheets with great efficiency, and so, at

one time, were considered as possible candidates for finite-
time singularities �Pumir and Siggia �3��. However, they are
also of interest because closely related viscous flows are
readily found in nature. For example, rising, buoyant blobs
are observed in a range of thermally driven flows, such as
thermals in the atmosphere �see, for example, Scorer �4�� or
convective heat transfer from surfaces of low thermal diffu-
sivity �see, for example, Hunt et al. �5��. They are also im-
portant in flows driven by solutal buoyancy, such as the
buoyant blobs thought to be released near the inner core of
the Earth, which stir the Earth’s molten core �Moffatt and
Loper �6��. Localized blobs of swirling fluid, which burst to
form a thin annular vortex sheet, are possibly less common
in geophysics. However, they are readily generated in the
laboratory and are typically observed when a submerged cyl-
inder or sphere is suddenly set into rotation about its axis of
symmetry, or else subjected to rotary oscillations. In such
cases an azimuthal boundary layer is set up that is centrifu-
gally unstable by Rayleigh’s criterion. The boundary layer
then breaks up into ring-shaped vortices of swirling fluid,
which burst radially outward under the action of the centrifu-
gal force �7�. So, while the rise of an inviscid buoyant blob,
or the bursting of a swirling vortex, has been studied mostly
by those interested in inviscid initial value problems, these
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idealized flows have viscous counterparts which are readily
observed in nature.

In this paper, we reexamine these flows, but in the case
where the fluid is electrically conducting and threaded by a
uniform magnetic field. The analysis is part theoretical and
part numerical, and restricted to inviscid fluids. We shall
show that, when the magnetic field is zero, the thickness of
the vortex sheet decreases exponentially fast, but that a non-
zero magnetic field inhibits the formation of the sheet, plac-
ing a lower bound on the sheet thickness. We shall also see
that the magnetic field causes the energy and momentum of
the disturbance to diffuse along the magnetic field lines, as
discussed in Davidson �8,9�.

The structure of the paper is as follows. The governing
equations and notation are introduced in Sec. II. Next, in
Sec. III, we examine the evolution of a localized swirling
vortex, producing simple analytical models for the cases of
large and small magnetic field. These theoretical predictions
are compared with numerical simulations in Sec. IV, where
they are found to be consistent with those simulations. We
turn to the evolution of buoyant blobs in Sec. V, where, once
again, we develop analytical models for both strong and
weak magnetic fields. The latter is consistent with the nu-
merical simulations of E and Shu �1�.

II. GOVERNING EQUATIONS

We consider localized disturbances in an inviscid, incom-
pressible, Boussinesq fluid of mean density �, and density
perturbation ��, which we rewrite as ��=−T�. The fluid is
threaded by a uniform magnetic field B=Bêz, and its electri-
cal conductivity � is sufficiently low for the magnetic Rey-
nolds number Rm=��ul to be much less than unity. �Here l
and u are typical length and velocity scales, and � is the
permeability of free space.� Note that Rm�1 is characteristic
of virtually all terrestrial magnetohydrodynamics �MHD�. Fi-
nally, the analysis is restricted to axisymmetric motion, de-
scribed in cylindrical polar coordinates �r ,� ,z�, where both
B and the gravitational acceleration are aligned with êz.

The governing equation of motion for the velocity field is,
of course,

Du

Dt
= − �� p

�
� + gTêz + J � B/� ,

where −gêz is the gravitational acceleration, p the fluid pres-
sure, D/Dt is the convective derivative, and J the current
density. For Rm�1, Ohm’s law reduces to �Davidson �9��

J = ��− �� + u � B� ,

� being the electric potential, from which

� � J = �B · �u . �1�

Since � ·J=0, Eq. �1� is sufficient to determine J, and hence
the Lorentz force F=J�B /�. For axisymmetric motion, it is
readily confirmed that the nonzero components of F are �see
Davidson �8��

Fr = −
ur

	
, F� =

1

r	

�


�z
, �2�

where 	= ��B2 /��−1 is the so-called magnetic damping time
and �B
 is the Stokes streamfunction for the poloidal
component of J, i.e.,

Jp = �Jr,0,Jz� = � � ���B


r
�ê�� . �3�

�We shall use the subscript p throughout to indicate the po-
loidal �r ,z� part of a vector.� Comparing Eqs. �1� and �3� we
find

�*
2
 = r

�

�r

1

r

�


�r
+

�2


�z2 = −
��

�z
, �4�

where �=ru� is the angular momentum per unit mass and �*
2

is the Stokes operator. Hence the Lorentz force can be
written in the more compact form

F = −
ur

r
êr −

1

r	
� �2

�z2�*
−2��ê�,

where the inverse operator �*
−2 is defined via the Biot-Savart

law.
There are two cases of particular interest: swirling flow in

the absence of density perturbations �T=0, ��0� and non-
swirling flow in the presence of buoyancy ��=0, T�0�. In
the first of these cases, our governing equation reduces to

Du

Dt
= − �� p

�
� −

ur

r
êr −

1

r	
� �2

�z2�*
−2��ê�,

which is more conveniently rewritten in terms of the two
scalar equations

D�

Dt
=

1

	

�


�z
= −

1

	

�2

�z2�*
−2� , �5�

D

Dt
���

r
� =

1

r4

��2

�z
−

1

r	

�ur

�z
. �6�

Here, �� is azimuthal vorticity, which is related to the Stokes
streamfunction 
 for the poloidal velocity up through the
expressions

r�� = − �*
2
, up = � � ��


r
�ê�� .

Note that the entire flow field can be described in terms of
two scalars � and ��, or equivalently, � and 
. Note also that
� is the Stokes streamfunction for the poloidal vorticity

�p = � � ���

r
�ê�� .

Thus large gradients in � correspond to regions of intense
�p.

Turning now to the case where there is no swirl, but finite
buoyancy, our governing equations are

DT

Dt
= 0,
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Du

Dt
= − �� p

�
� + gTêz −

ur

	
êr,

the second of which is more conveniently rewritten as the
vorticity equation

D

Dt
���

r
� = −

1

r
�1

	

�ur

�z
+ g

�T

�r
� .

Finally, we shall find it convenient to introduce the so-called
interaction parameter N, which is conventionally defined as

N =
l/u

	
.

This provides a convenient measure of the ratio of the Lor-
entz to inertial forces.

III. THE EVOLUTION OF A SWIRLING BLOB OF FLUID:
THEORETICAL CONSIDERATIONS

We now focus on the situation where we have a localized
region of swirl in an otherwise quiescent, infinite fluid. We
ignore buoyancy, and take as our initial condition

� = ru� = �r2 exp�−
r2 + z2

l2 �, up = 0. �7�

We shall find it convenient to divide the theoretical discus-
sion into three parts: �i� N=0 �no magnetic field�; �ii� N
→� �strong magnetic field�; and �iii� N	1 �inertia 	 Lor-
entz force�. We shall see that, when N=0, the swirling blob
bursts radially outward under the action of the centrifugal
force, converting itself into a thin axisymmetric vortex sheet.
This bursting phenomenon is well-known �Grauer and Sid-
eris �10�, Pumir and Siggia �3�, and Davidson �2��, and there
has been much discussion over how rapidly the thickness of
the vortex sheet decreases. For example, at one time it was
thought that this flow was a good candidate for a finite-time
singularity �Pumir and Siggia �3��, though this is now
thought unlikely. Indeed, we shall show that there are good
theoretical reasons for believing that the vortex sheet thick-
ness decreases exponentially, rather than algebraically, and
indeed this is consistent with the numerical simulations pre-
sented in Sec. IV A. We shall also show that a magnetic field
inhibits the thinning of the vortex sheet, providing a lower
bound on the sheet thickness. Again, this is borne out by our
numerical simulations, reported in Sec. IV B.

A. The bursting of a swirling blob of fluid in the absence
of a magnetic field

Let us start with N=0. In the absence of a magnetic field,
Eqs. �6� and �5� simplify considerably, and a swirling vortex
evolves according to

D�

Dt
= 0, �8�

D

Dt
���

r
� =

1

r4

��2

�z
. �9�

At t=0, the poloidal velocity up, and hence ��, is zero by
virtue of our choice of initial condition. However, it is evi-
dent from Eq. �9� that �� is nonzero for t�0. The source
term for azimuthal vorticity ��2 /�z can be understood if we
recognize that it has its origins in �� �u���p�. Thus �� is
produced through a process of differential rotation in which
axial gradients in � spiral up the poloidal vortex lines to
produce azimuthal vorticity. It is clear that this produces a
skew-symmetric distribution of ��, with ���0 for z�0, and
���0 for z�0, as indicated in Fig. 1. The subsequent evo-
lution is then easy to interpret. The poloidal velocity associ-
ated with �� sweeps the �-lines radially outward �� is ma-
terially conserved� and the skew-symmetric distribution of
�� is preserved as the vortex expands. It is readily confirmed,
by integrating Eq. �9�, that

d

dt



z�0

��

r
dV = 2�


0

� �0
2

r3 dr , �10�

where �0�r�=��r ,z=0�. Thus the vortex bursts radially out-
ward while the integral of ��� /r� in each half-plane increases
monotonically. Moreover, as the �-lines are swept outward,
they develop into a thin axisymmetric sheet as shown in Fig.
1. This has a mushroomlike structure, reminiscent of a ther-
mal plume, while the thinning is a result of the axial strain
�uz /�z, which is positive at the front �see, for example,
Davidson �2��.

Of course, since � is the streamfunction for �p, this thin
front is, in fact, an axisymmetric vortex sheet. The question
posed by Grauer and Sideris �10� and Pumir and Siggia �3� is
whether or not the straining at the front is sufficiently intense
to produce a finite-time singularity.

We shall discuss a numerical simulation of this bursting
vortex in Sec. IV A. First, however, it is instructive to con-
sider a simple model of the process. We start by introducing

some additional terminology. Let �̂ be the maximum value
of �, which, by virtue of symmetry, sits on the plane z=0.

�Note that, since D� /Dt=0, �̂ is an invariant.� Also, let rf be

the position of the front, defined as the radial location of �̂,
and � be the thickness of the front, defined as the radial
separation between the two points at which �0 has dropped

to some fraction of �̂. Finally, we let l be the characteristic
axial length scale for the vortex, which, because l does not
grow with time, is set by the initial condition �7�, and let � be
the strength of the dipole field associated with ��, defined as

� =
1

2�



z�0

��

r
dV = 


z�0
��drdz . �11�

Using Eq. �10�, we may write down evolution equations for
�, rf, and �. They are

d�

dt
= 


0

� �0
2

r3 dr , �12�
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d�

dt
� � �ur

�r
�

f

� , �13�

drf

dt
= �ur� f , �14�

where the subscript f indicates a quantity measured at the
front, and we have assumed �� l in making the estimate
�13�. Now, the Biot-Savart law tells us that �ur� f 	� / l and
��ur /�r� f 	−� / l2, provided that rf � l, i.e., the vortex is
well-developed. Thus simple approximations to Eqs.
�12�–�14� are

d�

dt
= a

�̂2�

rf
3 , �15�

d�

dt
= − b

�

l2� , �16�

drf

dt
= c

�

l
, �17�

where a, b, and c are positive coefficients of order unity. If,
for simplicity, we take a, b, and c to be constants, then sys-
tem �15�–�17� is readily integrated. Let �0, �0, and rf0 be the
values of �, �, and rf at some reference time t0. From Eqs.
�16� and �17�, we have

rf

rf0
= 1 − � ln� �

�0
�, � =

cl

brf0
, �18�

while Eqs. �15� and �16� combine to yield

d2

dt2 ln � = −
1

2
�

�/�0

�rf/rf0�3 , � = 2ab
�̂2�0

l2rf0
3 , �19�

where � and � are positive constants. Expression �19� is
readily integrated once to give

d

dt
ln � = − �A +

�

�0



�

�0 d�

�rf/rf0�3�1/2

, �20�

and

� =
l2

b �A +
�

�0



�

�0 d�

�rf/rf0�3�1/2

, �21�

where

A = b2�0
2

l4 . �22�

It is now straightforward to eliminate rf /rf0 from Eqs. �20�
and �21�, using Eq. �18�, and to integrate these equations to
give explicit expressions for � and �. However, the integra-
tion is cumbersome, involving exponential integrals of nega-
tive argument, and so it is more informative to use Eqs. �20�
and �21� to place bounds on the values of ln�� /�0� and �.
These are obtained by noting that, by virtue of Eq. �18�,

�0 − �

�1 + � ln��0/���3 � 

�

�0 d�

�rf/rf0�3 � �0 − � ,

from which upper and lower bounds on ln��0 /�� and � may
be obtained. It is readily confirmed that, for large t �large in
comparison with �A+��1/2�, we obtain

exp�− 
A + ��t − t*�� � �/�* � exp�− 
A�t − t*�� , �23�

FIG. 1. Centrifugal bursting of
a swirling vortex: �i� the initial
condition; �ii� the associated po-
loidal vorticity; �iii� the azimuthal
vorticity swept out from the poloi-
dal vorticity by differential rota-
tion; �iv� the poloidal velocity as-
sociated with the azimuthal
vorticity sweeps out the angular
momentum �; and �v� the even-
tual state.
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l2

A

b
� � � l2


A + �

b
, �24�

1 + �
A�t − t*� � rf/rf* � 1 + �
A + ��t − t*� ,

�25�

where t*, rf*, and �* are constants. In short, this simple
model predicts that, at large times, � decreases exponentially,
� saturates at a constant value, and rf grows linearly in time.
We shall see that these predictions are consistent with the
numerical solutions.

The reason for the exponential, rather than algebraic,
growth in �−1 can be understood as follows. At the front, we
have

D

Dt
� ��

�r
�

f

= − � �ur

�r
�

f
� ��

�r
�

f

,

and so the behavior of ��� /�r� f depends critically on the
relationship between ��ur /�r� f and ��� /�r� f. If ��ur /�r� f

happens to scale as −l−1��� /�r� f, which it would if the
strain at the front were controlled by the local vorticity dis-
tribution, then we would obtain a finite-time singularity. On
the other hand, ��ur /�r� f 	−� / l2 yields an exponential
growth in ��� /�r� f. Thus Eq. �23� follows from the observa-
tion that the strain-field at the front is associated with the
global distribution of �� and not the local value at the front.

B. The evolution of a swirling vortex in an intense magnetic
field

Let us now turn to the other extreme, where there is an
intense magnetic field, and so N�1. In this case, the inertial
force u ·�u may be neglected, and Eq. �5� reduces to the
linear equation

��

�t
=

1

	

�


�z
= −

1

	

�2

�z2�*
−2� . �26�

Note that, like the nonmagnetic case, the total angular mo-
mentum is conserved

I� =
 � dV = const, �27�

but that � is no longer materially conserved. The solution to
Eq. �26� is readily obtained using the Hankel-Fourier trans-
form. Some of the features of this solution are as discussed
in Davidson �8�, which we summarize here, as the results are
used in subsequent sections.

If we introduce the transform pair

��kr,kz� = 4�

0

� 

0

�

J1�krr�cos�kzz��drdz ,

��r,z� =
r

2�2

0

� 

0

�

kr�J1�krr�cos�kzz�dkrdkz,

then Eq. �26�, in the form

�

�t
�*

2� +
1

	

�2�

�z2 = 0,

transforms to

��

�t
+

kz
2

	k2� = 0, k2 = kr
2 + kz

2.

Solving for �, and taking the inverse transform then yields

� =
r

2�2

0

� 

0

�

�0e−kz
2t̂/k2

krJ1�krr�cos�kzz�dkrdkz, �28�

where �0=��t=0�, and t̂= t /	. For t̂�1, only those Fourier
modes in which kz→0 contribute to Eq. �28�, and so integral
�28� simplifies to

��t̂ → � � =
r2

2�2

0

�

krJ1�krr��0�kz → 0�

�

0

�

cos�kzz�e−kz
2t̂/kr

2
dkrdkz,

which, on evaluating the inner integral, yields

��t̂ → � � =
r

4�
3
2
t̂



0

�

kr
2J1�krr��0�kz → 0�exp�−

z2kr
2

4t̂
�dkr.

�29�

This tells us that, whatever the initial condition, at large
times, we have

� 	 � t

	
�−1/2

F�r,z/�t/	�1/2� , �30�

for some arbitrary function F. Thus the amplitude of �
falls as �t /	�−1/2, while the axial length scale lz grows in a
diffusive manner as lz	 l�t /	�1/2, where l is the initial vortex
size. In short, the eddy evolves into an elongated cigarlike
structure aligned with the magnetic field. As noted in David-
son �8�, these scalings follow directly from the conservation
law �27�, combined with a simple estimate of the Joule
dissipation. That is, from Eq. �1�, we have

J 	 � l

lz
��Bu�,

and so the Joule dissipation D is of the order of

D =
 � J2

�
�dV 	

�

	
� l

lz
�2
 u�

2dV .

It follows that the kinetic energy E�=� 1
2u�

2dV decays
according to

dE�

dt
	 −

1

	
� l

lz
�2

E�, �31�

subject to the conservation law

I� 	 u�l2lz = const. �32�

It is readily confirmed that Eqs. �31� and �32� demand
u�	�t /	�−1/2, E�	�t /	�−1/2, and lz	�t /	�1/2, as in Eq. �30�.
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Thus the scaling laws �	 t̂−1/2 and lz	 t̂1/2 are essentially a
consequence of angular momentum conservation.

For the particular case of initial condition �7�, the integral
�29� may be evaluated directly, and we obtain

��t̂ � 1� =
3
��l5r2

4�5
t̂
e−r2/�2

M�−
1

2
,2,

r2

�2� , �33�

where �2= l2+z2 / t̂, and M is Kummer’s hypergeometric
function. The function M�− 1

2 ,2 ,x� is equal to unity at x=0,
falls to zero around x=3, and is negative thereafter. Thus the
solution for � at large times consists of a cigarlike structure
with a central core of positive rotation, enveloped in an an-
nulus of negative swirl. The blanket of counter-rotation was
anticipated in Davidson �11�, and subsequently observed ex-
perimentally in Sreenivasan �12�. It is a consequence of the
way in which the radial currents induced within the vortex
are forced to recirculate outside the vortex core. We shall see
in Sec. IV that this phenomenon is also evident for N	1.

C. The evolution of a swirling vortex for NÈ1

It is evident from the discussion above that the behavior
of our swirling vortex is very different for N�1 and N�1,
with the vortex bursting radially outward in the former case,
and diffusing along the z-axis in the latter. It is natural, there-
fore, to ask what happens when N	1. In this respect, it is
useful to note that, for arbitrary N, Eqs. �5� and �6� integrate
to give

I� =
 �dV = const,

and

d�

dt
= 


0

� ��0
2

r3 �dr −
1

	



0

�

�ur�0dr , �34�

where �ur�0=ur�r ,z=0�, and � is defined by Eq. �11�. Evi-
dently, the tendency for the vortex to burst radially outward
is now countered by the braking effect of the Lorentz force,
which acts to suppress ur in accordance with Eq. �2�. Now
�ur�0 is initially zero, and so we would expect �, and its
associated poloidal kinetic energy, to grow for t�	. How-
ever, as �ur�0 increases, so does the damping term on the
right of Eq. �34�, and we might anticipate that this growth is
eventually curtailed. We shall see shortly that this is exactly
what happens, with the poloidal kinetic energy reaching a
maximum at t		, and falling thereafter.

Note that the annulus of negative swirl, evident in the
high N solution �33�, will also be present for N	1, as indi-
cated in Fig. 2. That is, the emf u��B drives current radially
outward, and this current returns through regions of weak or
zero swirl. The result is a negative azimuthal force F�=
−JrB, in regions where Jr is positive, and a positive force
where Jr is negative. The latter occurs above and below the
vortex, and is the mechanism by which swirl diffuses along
the magnetic field lines, while the former occurs in the core
of the vortex and in the surrounding annulus, giving rise to
the counter-rotation �Davidson �11��.

While the magnetic field suppresses the growth of � �and
hence the radial flow�, in accordance with Eq. �34�, we
would expect the field to suppress also the growth in �� /�r.
This is most readily demonstrated in cases where radial gra-
dients are much greater than axial gradients, which is true at
large time for both N�1 and N�1. In such a case, the
Stokes operator is dominated by radial gradients, and Eq. �4�
reduces to

�*
2
 � r

�

�r

1

r

�


�r
= −

��

�z
.

The governing equation for �, Eq. �5�, then yields

D

Dt
� ��

�r
� = −

�ui

�r

��

�xi
+

1

	

�2

�z2�r

r

� �

r
dr� ,

which, when applied to the front, reduces to

D

Dt
� ��

�r
�

f

= − � �ur

�r
�

f
� ��

�r
�

f

+
1

	
� �2

�z2�r

r

� �

r
dr��

f

.

�35�

We have already seen that the first term on the right leads to
an exponential growth in �� /�r in cases where B=0. When
B is nonzero, however, we would expect ��� /�r� f to saturate
when the two terms on the right, which are of opposite sign,
cancel. We shall see that this saturation does indeed occur.

IV. THE EVOLUTION OF A SWIRLING BLOB OF FLUID:
NUMERICAL SIMULATIONS

It is convenient to divide the simulations into magnetic
and nonmagnetic cases. We start with N=0 �no magnetic
field�.

A. The evolution of a swirling blob in the absence
of a magnetic field

The simulations reported in this section used a finite-
volume scheme with a specialized upwind method for the

FIG. 2. The current induced by the interaction of u� with B.
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nonlinear advection terms, and a projection step to enforce
the divergence-free constraint. The method is conservative,
second-order in both space and time, and preserves monoto-
nicity. Adaptive mesh refinement is achieved using a nested
hierarchy of Cartesian �r ,z� grids with simultaneous refine-
ment in both space and time. The details can be found in
Almgren et al. �13�.

The initial condition was given by Eq. �7�, and � and l
were used to normalize time and length scales. Symmetry
boundary conditions were used on the midplane �z=0�, and
free-slip walls were specified at the other two boundaries.
The domain size was set to 6l�6l �for z�0�, which was
found to be sufficiently large to allow the flow to develop
freely, without substantial computational expense.

Initial simulations showed that a resolution of 10242 was
sufficient to resolve the bulk of the velocity field, but that
further resolution was required to capture the extremely high
angular momentum gradients and strain-rate at the front.
Therefore the simulations were conducted on a base grid
with a resolution of 2562, with four levels of refinement. An
advected tracer c was used to allocate the refined grids dy-
namically. The first level of refinement had a refinement fac-
tor of 4, which gives an effective resolution of 10242 for the
velocity field. The three highest levels each had a refinement
factor of 2, providing an effective resolution of 81922 to
follow the evolution of the front. The front thickness was
defined as the distance between the two points where

�0= �̂ /2.
Since a finite-volume approach is taken, the simulations

are subject to numerical diffusion. It was found that sensitive
diagnostics for characterizing when the numerical diffusion
becomes important are measuring the position of the global
maximum in angular momentum and the peak value on the
z=0 axis. Since angular momentum is materially conserved,
the maximum angular momentum in the domain should oc-
cur on this axis and remain constant with time. Whenever
numerical diffusion becomes important, the global maximum
is swept away from the axis, and the axial maximum was
observed to decrease rapidly. In all of the calculations re-
ported in this section, the maximum angular momentum re-
mained on the axis and above 99.8% of the initial peak
value. This implies that numerical diffusion has not affected
the results.

The results of the simulation are shown in Figs. 3–10.
Figures 3 and 4 show the evolution of � and �� for
0� t�15, while Figs. 5–7 show how �, 2��, and rf vary
over the same time period. It is clear from Fig. 3 that the
vortex bursts radially outward, while � organizes itself into a
mushroomlike structure with a thin front, as anticipated in
Sec. III A. As � is swept outward, it is followed by a cloud
of azimuthal vorticity of increasing strength, in accordance
with Eq. �12�. For z�0, this vorticity is predominantly nega-
tive, though there is a thin annulus of positive �� that lies
just behind the cap of the mushroom. Of course, this positive
vorticity is generated in accordance with Eq. �9�, and is
caused by the high local gradients in �. The azimuthal
vorticity is skew-symmetric about z=0.

From Figs. 5 and 6, we see that, for times later than
t�10, � decreases exponentially, while � saturates, as pre-

dicted by Eqs. �23� and �24�. The corresponding variation of
rf is not far from linear, as suggested by Eq. �25�, though
there is a slight curvature in rf�r� for 10� t�15, suggesting
rf 	 tn, n�1. Figure 8 shows the azimuthal, E�, poloidal, Ep,
and total, E, kinetic energy for 0� t�15. There is a con-
tinual rise of Ep, at the expense of E�, reflecting the rise of �,
while the total energy remains constant.

Figure 9 illustrates the variation of �0, ��uz /�z�0, and �ur�0

with r, for 10� t�15, while Fig. 10 shows the same
information plotted against the normalized coordinate
�= �r−rf� /�. It is clear that, as the front evolves, a narrow
region of intense strain forms behind it, and that the width of
this region of strain, as well as its distance from the front,
scales on �. If we compare Figs. 4 and 9, we see that this
thin, annular band of intense strain is associated with the
formation of a narrow region of positive �� �for z�0�, em-
bedded within an otherwise negative cloud of vorticity. Cru-
cially, however, the front always remains out of reach of this
patch of intense strain, so that the exponential decrease of �
is associated with the global growth of a cloud of negative
�� �for z�0�, and its associated poloidal strain field, rather
than the high local strain field immediately behind the front.

B. The evolution of a swirling blob in the presence
of a magnetic field

We now turn to simulations in which the magnetic field is
nonzero. We have considered the cases of N=0.5, 1, and 5,
where N is based on the maximum velocity at t=0, and the
initial vortex size l. The computational domain is spherical,
or radius R, and the initial condition is

u� = �r
r2 + z2 exp�−
r2 + z2

l2 �, up = 0.

The numerical scheme used here is different from that of
Sec. IV A. It uses spherical polar coordinates, expanded in
terms of spherical harmonics, is spectral in the azimuthal
angle, and employs finite-differences in the radial coordinate.
To ensure the flow is adequately resolved, two different reso-
lutions were used in the radial direction for each value of N.
For N=1 and 5, the number of radial nodes was set to 400
and 800, with no discernible difference between the two lev-
els of resolution. For N=0.5, on the other hand, a thin radial
front forms, not unlike that for B=0, and so higher resolution
is required. In this case, the calculation was constrained to
remain axisymmetric and the number of radial nodes set
equal to 2000 and 2800, again with no discernible difference
between the two levels of resolution. The initial vortex size
was chosen as l=R /20 for N=1 and 5, and equal to R /8 for
N=0.5. The fully three-dimensional simulations at N=1 and
N=5 remained axisymmetric, and so the restriction of axial
symmetry for N=0.5 is not unreasonable. In order to ensure
numerical stability, a small but finite viscosity was intro-
duced, such that the initial Reynolds number, based on the
vortex size, was 5000. However, the dissipation introduced
by this viscosity is very small by comparison with the ohmic
dissipation.

The dominant behavior for N=1 and 5 is an axial diffu-
sion of momentum along the magnetic field line, reminiscent
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of the large N behavior of Sec. III B. However, as we shall
see, while N=5 is close to the large-N asymptotic solution,
the behavior at N=1 is significantly different. In any event,
in both cases a columnar vortex forms, which reaches the
boundary at around t /	�50. The behavior at N=0.5 is more
reminiscent of the nonmagnetic solution of Sec. IV A, char-
acterized by a radial bursting of the vortex and the associated

formation of a thin radial front. However, the finite magnetic
field at N=0.5 still plays an important role. For example, as
we shall see, the exponential decrease in the front thickness,
which is characteristic of the nonmagnetic case, is eventually
halted by the magnetic field, in accordance with Eq. �35�.

We now consider the three cases in detail, starting with
N=1 and 5. Figure 11 shows the contours of angular momen-

FIG. 3. Contours of � for 0� t�15, where �
and t are normalized by �l2 and �−1,
respectively.
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tum �, and Stokes streamfunction 
 at t /	=8, 16, and 64 for
N=5. Note that only one-half of the computational domain is
shown, i.e., 0�r2+z2�

R
2 . The same information is given for

N=1 in Fig. 12. It is evident that the primary phenomenon is
a diffusion of momentum along the magnetic field lines, as
suggested by Eq. �30�. However, there is some evidence that

FIG. 4. Contours of �� for
t=9, 11, 13, and 15, where �� and
t are normalized by � and �−1,
respectively.

EVOLUTION OF LOCALIZED BLOBS OF SWIRLING OR… PHYSICAL REVIEW E 75, 026304 �2007�

026304-9



this axial diffusion is accompanied by a radial movement in
the case of N=1. In both cases, there is an annulus of nega-
tive swirl surrounding the primary vortex, as anticipated in
Sec. III C.

The primary difference between the N=1 and 5 cases
can be seen by looking at the energy decay. Figure 13
shows the total kinetic energy, E, normalized by its value at
t=0, E0, for 0.1� t /	�60. While the energy falls as
E	�t /	�−1/2 at N=5, in accordance with the large N solution
of Sec. III B, the plot of E versus t /	 exhibits a steeper
decline for N=1, closer to �t /	�−0.65. At first sight, this
steeper decline seems paradoxical, since B, and hence the
ohmic dissipation, is smaller for N=1. However, we have
plotted E /E0 against t /	, rather than t. If we had normalized
t by the initial eddy turnover time, rather than 	, then the
energy curve corresponding to N=5 would lie below that of
N=1, in accordance with intuition.

The poloidal kinetic energy Ep=� 1
2up

2dV is shown in Fig.
14, for N=1 and 5. As before, it is normalized by E0, while

t is normalized by 	. This energy initially grows in accor-
dance with Eq. �34�, reaches a maximum at around t		, and
then declines. The poloidal energy is largest for N=1, as
expected, and eventually decays as Ep	�t /	�−1/2, for N=5.
This Ep	�t /	�−1/2 decay for large N can be understood as
follows. For N�1, Eq. �6� simplifies to

�

�t
��*

2
� +
1

	

�2


�z2 = −
1

r2

��2

�z
, �36�

while to leading order in N−1, � is given by Eq. �30� in the
form

� 	 �l2� t

	
�−1/2

F� r

l
,
z

l
� t

	
�−1/2�,t � 	 . �37�

Expressions �36� and �37� admit the self-similar solution

FIG. 5. Variation of �, the thickness of the front, for 0� t�15,
where � and t are normalized by l and �−1, respectively.

FIG. 6. Variation of 2��, the dipole strength, for 0� t�15,
where t and � are normalized by �−1 and �l2, respectively.

FIG. 7. Variation of rf, the location of the front, for 0� t�15,
where rf and t are normalized by l and �−1, respectively.

FIG. 8. Azimuthal, poloidal, and total kinetic energy, for
0� t�15, where t is normalized by �−1.
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�2l3	

�t/	�1/2G� r

l
,
z

l
� t

	
�−1/2�, t � 	 ,

from which we obtain

Ep

E0
	

1

N2�t/	�1/2 , t � 	 .

This not only explains the �t /	�−1/2 decay of Ep for large N,
but also suggests Ep /E0 decreases as N−2 as N increases.

FIG. 9. Variation of �0 �solid line�, ��uz /�z�0 �dashed line�, and �ur�0 �dotted line� with r, for 10� t�15. All quantities are normalized
using � and l for the time and length scales.
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Figures 15–18 relate to the case of N=0.5, with Fig. 15
showing � and 
 at t /	=1.6, 4.8, and 11.2, and Fig. 16
showing E /E0, E� /E0, and Ep /E0 for 0.1� t /	�12. The
general picture is that of a hybrid of the large-N and non-
magnetic cases, with some evidence of a radial bursting of
the vortex, combined with an axial diffusion of momentum.
Of particular interest is the development of the front. Figure
17 shows �0�r�=��r ,z=0� at t /	=1.6, 3.2, 6.4, and 11.2.

Note that, like the high-N solution, but unlike the nonmag-
netic case, there is an annulus of negative swirl surrounding
the vortex core, as discussed in Sec. III C. It is natural to
define the characteristic thickness of the front � as the dis-
tance between the maximum and minimum in �0�r�. Using
this definition, the evolution of � is shown in Fig. 18. Note
that, initially, the front thins exponentially fast, as in the
nonmagnetic case, but that � eventually settles down to a

FIG. 10. Variation of �0 �solid line�, ��uz /�z�0 �dashed line�, and �ur�0 �dotted line� with �= �r−rf� /�, for 10� t�15. All quantities are
normalized using � and l for the time and length scales.
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constant value for times later than t /	�8. This is in
accord with the discussion in Sec. III C and with Eq. �35� in
particular.

In summary, then, even a weak magnetic field fundamen-
tally changes the way in which a swirling vortex evolves.
Instead of an exponential growth in ��� /�r� f, which charac-
terizes the nonmagnetic case, the introduction of a finite
magnetic field halts the decline of �, causing it to saturate.
The magnetic field also causes the growth of an annular
region of negative swirl, which envelops the vortex core.

V. THE EVOLUTION OF A BUOYANT BLOB
OF FLUID

We now turn to the evolution of a localized, buoyant blob
of fluid in an otherwise quiescent, infinite fluid, threaded by
a uniform magnetic field. The governing equations are

DT

Dt
= 0, �38�

D

Dt
���

r
� = −

1

r
�1

	

�ur

�z
+ g

�T

�r
� , �39�

and we take as our initial condition

T = T̂ exp�−
r2 + z2

l2 �, up = 0. �40�

From Eq. �39�, we have

FIG. 11. Shaded contours of � �a�–�c� and 
 �d�–�f� at t /	=8,
16, and 64, for N=5. The outer radius is R /2, positive values appear
dark, and negative values white.

FIG. 12. Shaded contours of � �a�–�c� and 
 �d�–�f� at t /	=8,
16, and 64, for N=1. The outer radius is R /2, positive values appear
dark, and negative values white.

FIG. 13. Normalized kinetic energy E /E0, versus t /	, for
0.1� t /	�60, at N=1 �thin line� and N=5 �thick line�. The dashed
line corresponds to �t /	�−1/2.
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d

dt

 ���

r
�dV = 2�g


−�

�

T0dz, T0�z� = T�r = 0,z� ,

�41�

which is reminiscent of Eq. �10�, and tells us that
���� /r�dV increases monotonically. Moreover, Eq. �39� can
be manipulated into the form

D

Dt
�1

2
r��� = gT −

1

2
� · �rgTêr + � rur

	
�êz + �uz

2 − ur
2�êz

+ 2uruzêr� ,

from which we conclude

d

dt

 1

2
r��dV =
 gTdV .

However, the integral on the right is constant since T is
materially conserved, and so


 1

2
r��dV =
 uzdV = �
 gTdV�t . �42�

That is, the linear impulse of the eddy, which equals its net
vertical momentum, increases linearly in time. It is remark-
able that both Eqs. �41� and �42� are independent of the
magnetic field B. However, as with the swirling vortex, we
shall see that the magnetic field has a profound effect on the
development of the flow. As in Sec. III, we shall find it
convenient to divide the discussion into the cases of N=0 �no
magnetic field�, N→� �large magnetic field�, and N	1.

A. A buoyant blob in the absence of a magnetic field

Let us start with N=0, in which case our governing
equations simplify to

D

Dt
���

r
� = −

1

r
g

�T

�r
,

DT

Dt
= 0.

Thus radial gradients in T generate azimuthal vorticity. This,
in turn, produces a dipole velocity field that causes the blob

FIG. 15. Contours of � �a�–�c� and 
 �d�–�f� at t /	=1.6, 4.8, and
11.2, for N=0.5.

FIG. 16. Variation of E /E0 �thick line�, E� /E0 �dashed line�, and
Ep /E0 �thin line�, with t /	, for 0.1� t /	�12, and N=0.5. The
dotted line corresponds to �t /	�−1.

FIG. 14. Poloidal kinetic energy Ep, normalized by the initial
energy, E0, for 0.1� t /	�60, at N=1 �thin line� and N=5 �thick
line�. The dashed line corresponds to �t /	�−1/2.
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to rise. After an initial transient, the vorticity field rapidly
develops into the characteristic mushroomlike shape of a
thermal, as shown in Fig. 19. �See also Fig. 2 in E and Shu
�1�, which shows computed contours of T and ��.� Note that,
while the vortex sheet formed by the bursting vortex of Sec.
III A corresponds to the vorticity component �z, here the
vortex sheet corresponds to ��.

As with the swirling vortex, we would expect the front of
the thermal to get progressively thinner, and indeed, this is
precisely what E and Shu �1� observed. We now develop a
simple model of this process, closely analogous to that de-
scribed in Sec. III A. Let zf be the location of the front,
defined as the position on the z-axis of the maximum value

of T, i.e., T̂. Also, let � be the characteristic thickness of the
front, and �=��� dr dz, as in Sec. III A. Then

d�

dt
= g


−�

�

T0�z�dz , �43�

d�

dt
� � �uz

�z
�

f

� , �44�

dzf

dt
= �uz� f , �45�

where the subscript f indicates a quantity measured at the
front, and we have assumed �� l when making the estimate
�44�. The Biot-Savart law suggests that �uz� f 	� / l, and
��uz /�z� f 	−� / l2, and so simple approximations to Eq.
�43�–�45� are, for �� l,

d�

dt
= agT̂� , �46�

d�

dt
= − b� �

l2�� , �47�

dzf

dt
= c

�

l
, �48�

where a, b, and c are positive coefficients of order unity.
�Compare Eqs. �46�–�48� with Eqs. �15�–�17�.� If, for sim-
plicity, we treat a, b, and c as constants, these equations may
be readily integrated. Let �0 and �0 be values of � and � at
some reference time t0, and

FIG. 17. �0�r�=��r ,z=0� at t /	=1.6 �thin line�, 3.2 �dashed
line�, 6.4 �dash-dotted line�, and 11.2 �thick line�, for N=0.5, where
r is normalized by R.

FIG. 18. The variation of front thickness � with t /	, for
0� t /	�12, and N=0.5, where � is normalized by l.

FIG. 19. Schematic of the vorticity field associated with a rising
buoyant blob. �Adapted from E and Shu �1�.�
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� =
2abgT̂�0

l2 , A =
b2�2

l4 ,

be two positive constants. Then Eqs. �46� and �47� yield

d

dt
ln � = − ��A + �� − �

�

�0
�1/2

.

Integrating once more, and letting t→�, we find

��

�0
= C exp�− �A + ��1/2�t − t0�� ,

�� =
l2�A + ��1/2

b
,

�zf�� = � c��

l
�t ,

where the subscript � indicates t� t0, and

C =
2�A + ��

A +
�

2
+ A1/2�A + ��1/2

.

In short, our simple model suggests that, at large times, �
decreases exponentially, � asymptotes to a constant value,
and zf increases linearly in time. Interestingly, an exponential
reduction in � is exactly what E and Shu �1� predicted based
on somewhat different considerations. Moreover, the numeri-
cal simulations of E and Shu do indeed show �zf�� increas-
ingly linearly in time and � saturating at a constant value.
Thus our simple model seems to capture the primary features
of the flow reasonably well. One of the remarkable features
of our solution it that it predicts

�uz� f → const,

for t� t0, which seems to contradict Eq. �42�:


 1

2
r��dV =
 uzdV = �
 gTdV�t .

Thus despite the fact that the average vertical velocity in-
creases linearly in time, the vertical velocity at the front as-
ymptotes to a constant. This is related to the fact that, at late
times, the rate of generation of �� at the cap of the mush-
room is small �because �T /�r is small�, whereas the rate of
generation of �� near the base of the mushroom remains
relatively large.

B. A buoyant blob in the presence of an intense magnetic field

Let us now turn to the other extreme, where there is an
intense magnetic field. We shall see that, as for the swirling
vortex, the primary phenomenon is a diffusion of momentum
along the magnetic field lines. When N�1, we may neglect
the inertial force, u ·�u, and Eq. �39� reduces to

�

�t
�*

2
 +
1

	

�2


�z2 = gr
�T

�r
. �49�

This is readily solved using the Hankel transform pair

� = 4�

0

� 

0

�

J1�krr�cos�kzz�
drdz , �50�


 =
r

2�2

0

� 

0

�

krJ1�krr�cos�kzz��dkrdkz, �51�

and

T̃ = 4�

0

� 

0

�

J0�krr�cos�kzz�rTdrdz , �52�

T =
1

2�2

0

� 

0

�

krJ0�krr�cos�kzz�T̃dkrdkz, �53�

which transforms Eq. �49� into

��

�t
+

kz
2

	k2� =
kr

k2gT̃, k2 = kr
2 + kz

2. �54�

For N�1, the field T�x� can be considered as stationary
since it evolves on the slow time scale of l /u, rather than the

fast time scale 	. Thus T̃ may be treated as pseudo-static, and
Eq. �54� integrates to yield

� =
	gkrT̃

kz
2 �1 − exp�−

kz
2t̂

k2 �� ,

where t̂= t /	, as in Sec. III B. Note that for the modes in
which kz�k /
t̂ �i.e., axial scales for which �z � � l
t̂� this
reduces to

� =
	gkrT̃

kz
2 ,

which is the transform of the steady equation

�ur

�z
+ 	g

�T

�r
= 0. �55�

We shall return to this shortly. The solution for 
, and hence
ur, may now be obtained using Eq. �51�, and this yields

ur =
	g

2�2

0

� 

0

�

J1�krr�sin�kzz�� kr
2

kz
��1 − e−kz

2t̂/k2�T̃dkrdkz.

�56�

We now consider the form of ur at large times t�	. It turns
out that the general form of ur for t̂�1 is largely indepen-
dent of the precise details of T�x�, so, in order to focus our
thoughts, we adopt the initial condition �40�. This transforms
to

T̃ = �3/2T̂l3 exp�−
k2l2

4
� , �57�

from which
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ur =
	gl3T̂

2�1/2

0

�

kr
2J1�krr�e−kr

2l2/4

0

� sin�kzz�
kz

e−kz
2l2/4

��1 − e−kz
2t̂/k2

�dkzdkr.

This may be simplified by noting that, for t̂�1, only those
modes for which kz

2�k2 are important in exp�−kz
2t̂ /k2�, and

so we are free to replace k2 by kr
2 in this exponential. The

inner integral can now be evaluated directly, and we obtain

ur�t̂ � 1� =
1

4
�1/2	gT̂


0

�

s2J1� sr

l
�e−s2/4

��erf� z

l
� − erf� �z/l�s

2t̂1/2 ��ds , �58�

where s=krl. This solution takes different asymptotic forms
depending on whether �z � � lt̂1/2 or �z � � l. For z� l, we
have erf� z

l
�→1, and so Eq. �58� reduces to

ur�t̂ � 1,z � l� =
1

4
�1/2	gT̂


0

�

s2J1� sr

l
�e−s2/4

��1 − erf� zs

2lt̂1/2��ds , �59�

or

ur�t̂ � 1,z � l� = 	gT̂F� r

l
,

z

lt̂1/2� , �60�

for some function F. �The solution for large negative z is
obtained by noting that ur is skew-symmetric in z.� This has
the same structure as Eq. �30�, with momentum diffusing
along the magnetic field lines, and the axial length scale
growth in time as lz	 lt̂1/2.

For �z � � lt̂1/2, on the other hand, the term
exp�−s2 /4�erf�zs /2lt̂1/2� may be neglected in Eq. �58�, and
we obtain the steady solution

ur�t̂ � 1, �z� � lt̂1/2� = �1/2	gT̂ erf� z

l
�� r

l
exp�−

r2

l2 �� .

�61�

It is readily confirmed that this is a solution of the steady
equation �55�. For l� �z � � lt̂1/2, expression �61� further
simplifies to

ur�t̂ � 1� = ± �1/2	gT̂� r

l
e−r2/l2� ,

from which

�uz

�z
�t̂ � 1� = � 2�1/2	gT̂l−1�1 − � r

l
�2�e−r2/l2.

This represents a predominantly vertical motion �i.e.,
�ur � � �uz��, symmetric about z=0, which is more or less con-
fined to the cylindrical volume that circumscribes the density
perturbation T�x�. Since �uz /�z is independent of z, �uz� is a

maximum at z=0, and falls linearly with �z� above and below
z=0.

In summary, then, we have the following flow structure at
large times, t�	. Momentum diffuses along the magnetic
field lines, so that a highly elongated eddy develops, with an
axial length scale of lz	 lt̂1/2. Moreover, for �z � � lt̂1/2, the
flow is confined to the cylinder that circumscribes the density
perturbation, and is a solution of the steady equation

�ur

�z
+ g

�T

�r
= 0. �62�

Although we have arrived at these conclusions based on ini-
tial condition �40�, it is readily confirmed that all of these
features are quite general to any localized density perturba-
tion T�x� of scale l. This may be demonstrated as follows.
Only modes for which kz

2�k2 contribute to exp�−kz
2t̂ /k2� at

large t̂, and so our general expression for ur simplifies to

ur�t̂ � 1� =
	g

2�2

0

� 

0

� kr
2

kz
J1�krr�sin�kzz�

��T̃ − T̃0e−kz
2t̂/kr

2
�dkrdkz,

where T̃0�kr�= T̃�kr ,kz→0�. The last term on the right
integrates to give

ur�t̂ � 1� =
	g

2�2

0

�

kr
2J1�krr��


0

�

T̃
sin�kzz�

kz
dkz

−
�

2
T̃0 erf� zkr

2t̂1/2��dkr, �63�

and for z� l, this takes the form

ur�t̂ � 1,z � l� =
	g

4�



0

�

kr
2J1�krr�T̃0�kr��1 − erf� zkr

2t̂1/2��dkr.

This is a generalization of Eq. �59� in which lz	 lt̂1/2. For
�z � � lt̂1/2, on the other hand, the second term on the right of
Eq. �63� may be neglected and we find

ur�t̂ � 1, �z� � lt̂1/2� =
	g

2�2

0

�

kr
2J1�krr�


0

�

T̃
sin�kzz�

kz
dkzdkr,

which is a solution of the steady equation �62�, as anticipated
above.

The physical origin of this flow structure can best be seen
by returning to the governing equation �49�, and making the
approximation � /�z�� /�r, which is valid for t�	. Then
Eq. �49�� simplifies to

�

�t
�r

�

�r

1

r

�


�r
� +

1

	

�2


�z2 = gr
�T

�r
,

which, when Hankel transformed in the radial direction, us-
ing the one-dimensional equivalent of Eqs. �50� and �52�,
yields
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��1D

�t
=

1

	kr
2

�2�1D

�z2 +
gT̃1D

kr
.

This is a one-dimensional diffusion equation with a source

term of gT̃1D/kr. We see immediately that �1D diffuses in the
z-direction with a diffusivity of �	kr

2�−1	 l2 /	, which
explains why lz	 lt̂1/2.

C. The case of a moderate magnetic field

It is clear that the flows for N=0 and N�1 are very
different, with a thin vortex sheet forming on the axis of
symmetry for N=0, and rapid diffusion of momentum along
the z-axis for N�1. In the former case, the minimum length
scale is lz, while in the latter, lz is the maximum length scale.
Consider now the case of N	1. It seems likely that a finite
magnetic field will prevent the exponential thinning of the
vortex sheet, since the tendency for the sheet to thin, through
the action of the strain ��uz /�z� f, will be countered by the
tendency for momentum to diffuse along the z-axis. This can
be demonstrated for the case of N�1, by differentiating Eq.
�39� with respect to z, and noting that � /�z�� /�r at the
front. This yields

D

Dt
� �

�z
���

r
��

f

= − � �uz

�z
�

f
� �

�z
���

r
��

f

−
1

	
� �

�z
���

r
��

f

+ �	� ,

where �	� is a term involving �T /�r, which is weak at the

front. The first term on the right is responsible for the expo-
nential growth in ��� /�z when N=0, since ��uz /�z� f is nega-
tive in such cases. Evidently, the introduction of a magnetic
field has given rise to a term of opposite sign, so that the
growth in ��� /�z will cease when ���uz /�z� f � =	. In sum-
mary, then, we see the same behavior as for the swirling
vortex, with the magnetic field placing a lower bound on the
thickness at the front.

VI. SUMMARY

We have shown that there are many similarities between
localized blobs of swirling and buoyant fluid. In the absence
of an imposed magnetic field, the vorticity field rapidly de-
velops a sheetlike structure, which thins exponentially fast
and propagates with constant velocity. A weak magnetic field
places a lower bound on the thickness of the vortex sheet,
while a strong magnetic field completely suppresses its for-
mation. One curious feature of the buoyant blob is that, for
no imposed magnetic field, the vortex sheet has constant ver-
tical velocity, yet the vertical momentum of the blob as a
whole increases linearly with time.
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